Phân thức đại số

TA

Xác định giá trị của m để PT : \(m^3\left(x-2\right)-8\left(x+m\right)=4m^2\) có nghiệm duy nhất là số ko lớn hơn 1

AH
9 tháng 1 2018 lúc 23:29

Lời giải:

Ta có:

\(m^3(x-2)-8(x+m)=4m^2\)

\(\Leftrightarrow x(m^3-8)=2m^3+4m^2+8m\)

\(\Leftrightarrow x(m-2)(m^2+2m+4)=2m(m^2+2m+4)\)

\(\Leftrightarrow (m^2+2m+4)[x(m-2)-2m]=0\)

\(\Leftrightarrow x(m-2)-2m=0\) (do \(m^2+2m+4=(m+1)^2+3>0\forall m\) )

Để PT có nghiệm duy nhất thì \(m-2\neq 0\Leftrightarrow m\neq 2\) (1)

Khi đó nghiệm của PT là: \(x=\frac{2m}{m-2}\leq 1\Leftrightarrow 2+\frac{4}{m-2}\leq 1\)

\(\Leftrightarrow \frac{4}{m-2}\leq -1\)

\(0> m-2\geq -4\Leftrightarrow 2> m\geq -2\) (2)

Vậy kết hợp (1)(2) suy ra \(2> m\geq -2\)

Bình luận (3)

Các câu hỏi tương tự
TA
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
OY
Xem chi tiết
PB
Xem chi tiết