Đại số lớp 8

DH

Xác định a.b sao cho :

a/ 2x2 + ax + 1 chia cho x - 3 dư 4

b/ x4 + ax2 + b chia hết cho x2 - x + 1


 

AH
11 tháng 11 2018 lúc 23:03

Lời giải:

a) Áp dụng định lý Bê-du về phép chia đa thức ta có:

Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)

Ta có:

\(f(3)=4\)

\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)

b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$

\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)

\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)

\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)

\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)

Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)

Để phép chia là chia hết thì :

\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)

Bình luận (0)

Các câu hỏi tương tự
CG
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
VH
Xem chi tiết
LQ
Xem chi tiết
AP
Xem chi tiết
PN
Xem chi tiết
NN
Xem chi tiết