Theo hệ thức Vi-et : \(x_1+x_2=\dfrac{-b}{a}\) và \(x_1x_2=\dfrac{c}{a}\)
\(x_1^2+x_2^2+x_1x_2\left(x_1+x_2\right)\)
=\(\left(x_1+x_2\right)^2-2x_1x_2+x_1x_2\left(x_1+x_2\right)\)
=\(\left(\dfrac{-b}{a}\right)^2-2\dfrac{c}{a}+\dfrac{c}{a}\left(\dfrac{-b}{a}\right)\)
=\(\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{-bc}{a^2}\)
=\(\dfrac{b^2-2ac-bc}{a^2}\)