Bài 9: Tích của một vectơ với một số

QL

Với \(\overrightarrow u  \ne \overrightarrow 0 \) và hai số thực k, t, những khẳng định nào sau đây là đúng?

a) Hai vecto \(k\left( {t\overrightarrow u } \right)\) và \(\left( {kt} \right)\overrightarrow u \) có cùng độ dài bằng \(\left| {kt} \right|.\left| {\overrightarrow u } \right|\)

b) Nếu \(kt \ge 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) cùng hướng với \(\overrightarrow u \)

c) Nếu \(kt < 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) ngược hướng với \(\overrightarrow u \)

d) Hai vecto \(k\left( {t\overrightarrow u } \right)\) và \(\left( {kt} \right)\overrightarrow u \) bằng nhau.

HM
24 tháng 9 2023 lúc 15:51

a) Hai vecto \(k\left( {t\overrightarrow u } \right)\) và \(\left( {kt} \right)\overrightarrow u \) có cùng độ dài bằng \(\left| {kt} \right|.\left| {\overrightarrow u } \right|\)

Ta có: \(\left| {t\overrightarrow u } \right| = \left| t \right|\left| {\overrightarrow u } \right| \Rightarrow \left| {k\left( {t\overrightarrow u } \right)} \right| = \left| k \right|\left| {\left( {t\overrightarrow u } \right)} \right| = \left| k \right|.\left| t \right|\left| {\overrightarrow u } \right| = \left| {kt} \right|\left| {\overrightarrow u } \right|\)

Và \(\left| {\left( {kt} \right)\overrightarrow u } \right| = \left| {kt} \right|\left| {\overrightarrow u } \right|\)

\( \Rightarrow \left| {k\left( {t\overrightarrow u } \right)} \right| = \left| {\left( {kt} \right)\overrightarrow u } \right| = \left| {kt} \right|\left| {\overrightarrow u } \right|\)

b) Nếu \(kt \ge 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) cùng hướng với \(\overrightarrow u \)

Ta xét 2 trường hợp:

Trường hợp 1: \(k \ge 0,t \ge 0\)

Vecto \(k\left( {t\overrightarrow u } \right)\) cùng hướng với vecto \(t\overrightarrow u \) (vì \(k \ge 0\) ), mà vecto \(t\overrightarrow u \) cùng hướng với vecto \(\overrightarrow u \) (vì \(t \ge 0\) )

Do đó vecto \(k\left( {t\overrightarrow u } \right)\) cùng hướng với vecto \(\overrightarrow u \).

Trường hợp 2: \(k < 0,t < 0\)

Vecto \(k\left( {t\overrightarrow u } \right)\) ngược hướng với vecto \(t\overrightarrow u \) (vì \(k < 0\) ), mà vecto \(t\overrightarrow u \) ngược hướng với vecto \(\overrightarrow u \) (vì \(t < 0\) )

Do đó vecto \(k\left( {t\overrightarrow u } \right)\) cùng hướng với vecto \(\overrightarrow u \).

Vậy vecto \(k\left( {t\overrightarrow u } \right)\) luôn cùng hướng với vecto \(\overrightarrow u \) nếu \(kt \ge 0\).

Lại có: \(kt \ge 0\) nên \(\left( {kt} \right)\overrightarrow u \) cùng hướng với \(\overrightarrow u \)

Vậy \(kt \ge 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) cùng hướng với \(\overrightarrow u \)

c) Nếu \(kt < 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) ngược hướng với \(\overrightarrow u \)

Ta xét 2 trường hợp:

Trường hợp 1: \(k > 0,t < 0\)

Vecto \(k\left( {t\overrightarrow u } \right)\) cùng hướng với vecto \(t\overrightarrow u \) (vì \(k > 0\) ), mà vecto \(t\overrightarrow u \) ngược hướng với vecto \(\overrightarrow u \) (vì \(t < 0\))

Do đó vecto \(k\left( {t\overrightarrow u } \right)\) ngược hướng với vecto \(\overrightarrow u \).

Trường hợp 2: \(k < 0,t > 0\)

Vecto \(k\left( {t\overrightarrow u } \right)\) ngược hướng với vecto \(t\overrightarrow u \) (vì \(k < 0\) ), mà vecto \(t\overrightarrow u \) cùng hướng với vecto \(\overrightarrow u \) (vì \(t > 0\))

Do đó vecto \(k\left( {t\overrightarrow u } \right)\) ngược hướng với vecto \(\overrightarrow u \).

Vậy vecto \(k\left( {t\overrightarrow u } \right)\) luôn ngược hướng với vecto \(\overrightarrow u \) nếu \(kt < 0\).

Lại có: \(kt < 0\) nên \(\left( {kt} \right)\overrightarrow u \) ngược hướng với \(\overrightarrow u \)

Vậy \(kt < 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) ngược hướng với \(\overrightarrow u \)

d)

Từ ý b) và c), ra suy ra hai vecto \(k\left( {t\overrightarrow u } \right)\) và \(\left( {kt} \right)\overrightarrow u \)luôn cùng hướng.

Theo câu a) ta có: \(\left| {k\left( {t\overrightarrow u } \right)} \right| = \left| {\left( {kt} \right)\overrightarrow u } \right| = \left| {kt} \right|\left| {\overrightarrow u } \right|\)

\( \Rightarrow \)  Hai vecto \(k\left( {t\overrightarrow u } \right)\) và \(\left( {kt} \right)\overrightarrow u \) bằng nhau

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết