1. Tìm x để các căn thức bậc hai sau có nghĩa:
a) \(\sqrt{\frac{2}{9-x^{ }}}\) b) \(\sqrt{x^2+2x+1}\)
c) \(\sqrt{x^2-4x}\)
2. Tìm x để các biểu thức sau có nghĩa:
a) \(\sqrt{9-x^2}\) b) \(\sqrt{\frac{1}{x^2-4}}\)
c) \(\frac{1}{\sqrt{x}+2}+\frac{\sqrt{x}}{\sqrt{x}-3}\)
3. Rút gọn các biểu thức sau:
a) \(\sqrt{\left(3-\sqrt{10}\right)^2}\) b) \(\sqrt{9-4\sqrt{5}}\)
c) \(3x-\sqrt{x^2-2x+1}\)
Rút gọn biểu thức sau :( chú ý đặt ĐKXĐ trước khi trước khi thực hiện rút gọn)
a,P= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
b, D=\(\frac{\sqrt{x}+4}{1-7\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{x+1}}+\frac{24\sqrt{x}}{7x+6\sqrt{x}-1}\)
Cho biểu thức A = \(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
B = \(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) với x ≠ 9, x ≥ 0
a, Rút gọn biểu thức A
b, Tìm các giá trị của x để B > A
rút gọn biểu thức
a) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
cho biểu thức
A= \(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0; x khác 0
a) rút gọn biểu thức A
b) tính giá trị của x khi A > \(\frac{1}{6}\)
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Cho biểu thức: A= (\(\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\) với x\(\ge1,\ne2,\ne3\)
a, rút gọn biểu thức A
b, Tính giá trị của A với x= 3+ \(2\sqrt{2}\)
help me .-.
Tìm X để căn thức sau có nghĩa
a) \(\sqrt{1-2x}\) c) \(\sqrt{\frac{4}{5x-3}}\) e)\(\sqrt{1-x^3}\)
b) \(\sqrt{\frac{2}{1-x^2}}\) d) \(\sqrt{\frac{1}{\sqrt[3]{9-x^2}}}\) g) \(\sqrt{4x^2-9}\)
h) \(\sqrt{\frac{5-2x}{x^2+4}}\) i) \(\sqrt[3]{\frac{1-x}{1+x}}\) j) \(\frac{1}{x+\sqrt{x-4}}\)
k) \(\sqrt{\frac{3+x^2}{4-x^2}}\) l) \(\sqrt{\frac{x^2}{1+x}}\)