Bài 3: Phương trình mặt cầu

H24

Viết phương trình mặt cầu (S):

a) Có tâm I(7; −3; 0), bán kính R = 8;

b) Có tâm M(3; 1; −4) và đi qua điểm N(1; 0; 1);

c) Có đường kính AB với A(4; 6; 8) và B(2; 4; 4).

H24
30 tháng 10 2024 lúc 14:07

a) Mặt cầu \(\left( S \right)\) tâm \(I\left( {7; - 3;0} \right)\), bán kính \(R = 8\) có phương trình là

\({\left( {x - 7} \right)^2} + {\left( {y + 3} \right)^2} + {z^2} = 64\)

b) Mặt cầu \(\left( S \right)\) có tâm \(M\) và đi qua \(N\), nên \(MN\) là một bán kính của \(\left( S \right)\).

Ta có \(MN = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( {1 - 0} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}}  = \sqrt {30} \).

Vậy phương trình mặt cầu \(\left( S \right)\) là \({\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 4} \right)^2} = 30\).

c) Mặt cầu \(\left( S \right)\) có đường kính \(AB\), suy ra \(\left( S \right)\) có tâm \(I\) là trung điểm của \(AB\) và bán kính bằng \(\frac{{AB}}{2}\).

Ta có \(A\left( {4;6;8} \right)\) và \(B\left( {2;4;4} \right)\), suy ra \(I\left( {3;5;6} \right)\).

Ta có \(AB = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {6 - 4} \right)}^2} + {{\left( {8 - 4} \right)}^2}}  = 2\sqrt 6 \), suy ra \(R = \frac{{AB}}{2} = \sqrt 6 \).

Vậy phương trình mặt cầu \(\left( S \right)\) là \({\left( {x - 3} \right)^2} + {\left( {y - 5} \right)^2} + {\left( {z - 6} \right)^2} = 6.\)

Bình luận (0)