Ôn thi vào 10

H24

Trong mặt phẳng tọa độ Oxy, parabol y=x2 cắt đường thẳng y=3x+4 tại hai điểm A, B phân biệt. Tìm trên trục Ox điểm C để CA+ CB đạt nhỏ nhất.

-Giúp mình với ;-;

LH
27 tháng 5 2021 lúc 21:18

Xét pt hoành độ của (P) và (d) có:

\(x^2=3x+4\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

Tại x=-1 =>y=1

Tại x=4 =>y=16

Giả sử A(-1;1) và B(4;16)

Lấy A' đối xứng qua Ox => A'(-1;-1)

Gọi đường thẳng đi qua hai điểm A' B có dạng (d):y=ax+b

Có \(A';B\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}-1=-a+b\\16=4a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{17}{5}\\b=\dfrac{12}{5}\end{matrix}\right.\)

=> \(\left(d\right):y=\dfrac{17}{5}x+\dfrac{12}{5}\)

Có \(CA+CB=CA'+CB\ge A'B\)

Dấu = xảy ra <=> C,A',B thẳng hàng => C là giao điểm của đường thẳng đi qua hai điểm A'B và trục Ox => Tọa độ C là nghiệm của hệ: \(\left\{{}\begin{matrix}y=\dfrac{17}{5}x+\dfrac{12}{5}\\y=0\end{matrix}\right.\) 

 

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{12}{17}\\y=0\end{matrix}\right.\) => \(C\left(-\dfrac{12}{17};0\right)\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
H24
Xem chi tiết
VK
Xem chi tiết
ML
Xem chi tiết
PT
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
HN
Xem chi tiết