Bài 11: Tích vô hướng của hai vectơ

QL

Trong mặt phẳng tọa độ Oxy, cho hai điểm A (1; 2), B(-4; 3). Gọi M (t; 0) là một điểm thuộc trục hoành.

a) Tính \(\overrightarrow {AM} .\overrightarrow {BM} \) theo t.

b) Tính t để \(\widehat {AMB} = {90^o}\)

KT
24 tháng 9 2023 lúc 20:36

Tham khảo:

a) 

Ta có: A (1; 2), B(-4; 3) và M (t; 0)

\(\begin{array}{l}
\Rightarrow \overrightarrow {AM} = (t - 1; - 2),\;\overrightarrow {BM} = (t + 4; - 3)\\
\Rightarrow \overrightarrow {AM} .\overrightarrow {BM} = (t - 1)(t + 4) + ( - 2)( - 3)\\
\quad \quad \quad \quad \quad \quad= {t^2} + 3t + 2.
\end{array}\)

b)

Để \(\widehat {AMB} = {90^o}\) hay \(AM \bot BM\) thì \(\overrightarrow {AM} .\overrightarrow {BM}  = 0\)

\(\begin{array}{l} \Leftrightarrow {t^2} + 3t + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t =  - 2\end{array} \right.\end{array}\)

Vậy t = -1 hoặc t = -2 thì \(\widehat {AMB} = {90^o}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết