Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

TD

Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt phẳng ​\(\left(P\right):x+y-z+2=0\) và hai đường thẳng \(d:\left\{{}\begin{matrix}x=1+t\\y=t\\z=2+2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=3-t'\\y=1+t'\\z=1-2t'\end{matrix}\right.\). Biết rằng có hai đường thẳng có các đặc điểm: song song với \(\left(P\right)\), cắt \(d\), \(d'\) và tạo với \(d\) góc \(30^\circ\). Gọi hai đường thẳng đó là \(\Delta_1\) và \(\Delta_2\), tính \(\cos\widehat{\left(\Delta_1;\Delta_2\right)}=?\)

A. \(\dfrac{1}{\sqrt{2}}\)

B. \(\dfrac{1}{\sqrt{5}}\)

C. \(\dfrac{1}{2}\)

D. \(\sqrt{\dfrac{2}{3}}\)

H24
3 tháng 9 2023 lúc 8:03

Để tính cos(Δ1;Δ2), ta cần tìm vector chỉ phương của hai đường thẳng Δ1 và Δ2.

Vector chỉ phương của đường thẳng d là (1, t, 2) và vector chỉ phương của đường thẳng d' là (-1, 1, -2).

Để tìm vector chỉ phương của mặt phẳng (P), ta lấy vector pháp tuyến của mặt phẳng. Ta có vector pháp tuyến của mặt phẳng (P) là (1, 1, -1).

Để hai đường thẳng Δ1 và Δ2 song song với mặt phẳng (P), ta có điều kiện là vector chỉ phương của Δ1 và Δ2 cũng phải song song với vector pháp tuyến của mặt phẳng (P). Vì vậy, ta cần tìm vector chỉ phương của Δ1 và Δ2 sao cho chúng song song với vector (1, 1, -1).

Ta có thể tìm vector chỉ phương của Δ1 và Δ2 bằng cách lấy tích vector của vector chỉ phương của d hoặc d' với vector pháp tuyến của mặt phẳng (P).

Tính tích vector của (1, t, 2) và (1, 1, -1): (1, t, 2) x (1, 1, -1) = (t-3, 3t+1, -t-1)

Tính tích vector của (-1, 1, -2) và (1, 1, -1): (-1, 1, -2) x (1, 1, -1) = (-1, -3, -2)

Hai vector trên là vector chỉ phương của Δ1 và Δ2. Để tính cos(Δ1;Δ2), ta sử dụng công thức:

cos(Δ1;Δ2) = (Δ1.Δ2) / (|Δ1|.|Δ2|)

Trong đó, Δ1.Δ2 là tích vô hướng của hai vector chỉ phương, |Δ1| và |Δ2| là độ dài của hai vector chỉ phương.

Tính tích vô hướng Δ1.Δ2: (t-3)(-1) + (3t+1)(-3) + (-t-1)(-2) = -t-3

Tính độ dài của Δ1: |Δ1| = √[(t-3)² + (3t+1)² + (-t-1)²] = √[11t² + 2t + 11]

Tính độ dài của Δ2: |Δ2| = √[(-1)² + (-3)² + (-2)²] = √[14]

Vậy, cos(Δ1;Δ2) = (-t-3) / (√[11t² + 2t + 11] * √[14])

Để tính giá trị của cos(Δ1;Δ2), ta cần biết giá trị của t. Tuy nhiên, trong câu hỏi không cung cấp giá trị cụ thể của t nên không thể tính được giá trị chính xác của cos(Δ1;Δ2).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
ST
Xem chi tiết
NH
Xem chi tiết