Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

DA

Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(2;0;0) và B(1;1;-1). Viết phương trình mặt phẳng trung trực (P) của đoạn thẳng AB và phương trình mặt cầu tâm 0, tiếp xúc với (P)

NC
5 tháng 4 2016 lúc 16:07

Gọi M là trung điểm của AB, ta có \(M=\left(\frac{3}{2};\frac{1}{2};-\frac{1}{2}\right)\)

Vì (P) là mặt phẳng trung trực của AB nên (P) đi qua M và \(\overrightarrow{AB}=\left(-1;1;-1\right)\) là một vecto pháp tuyến  của (P)

Suy ra, phương trình của (P) là : \(\left(-1\right)\left(x-\frac{3}{2}\right)+\left(y-\frac{1}{2}\right)+\left(-1\right)\left(z+\frac{1}{2}\right)=0\)

                                        hay : \(2x-2y+2z-1=0\)

Ta có : \(d\left(O,\left(P\right)\right)=\frac{\left|-1\right|}{\sqrt{2^2+\left(-2\right)^2+2^2}}=\frac{1}{2\sqrt{3}}\)

Do đó phương trình mặt cầu tâm O , tiếp xúc với (P) là \(x^2+y^2+z^2=\frac{1}{12}\)

                                                                          hay : \(12x^2+12y^2+12z^2-1=0\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
TH
Xem chi tiết
MD
Xem chi tiết
NT
Xem chi tiết
HK
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
JJ
Xem chi tiết
QL
Xem chi tiết