\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{19}{20}\)
\(=\frac{1}{20}\)
( 1 − 1/ 2 ) ( 1 − 1 /3 ) . . . ( 1 − 1/ 20 )
= 1/ 2 . 2/ 3 . . . . 19/ 20
= 1/ 20
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{19}{20}\)
\(=\frac{1}{20}\)
( 1 − 1/ 2 ) ( 1 − 1 /3 ) . . . ( 1 − 1/ 20 )
= 1/ 2 . 2/ 3 . . . . 19/ 20
= 1/ 20
tìm x biết:
a) \(\left|x+0,573\right|=2\)
b)\(\left|x+\frac{1}{3}\right|-4=\left(-1\right)\)
c)\(1,5.\left|3x-1\right|+4,659=9,103\)
d) \(\left[\frac{\left(x-4\frac{1}{2}\right):0,003}{\left(3\frac{1}{20}-2,65\right).4:\frac{1}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right):\frac{1}{8}}\right]:62\frac{1}{20}+17,81:0,0131-1301=0\)
Tính :
A = \(\left(1-\frac{2}{3}+\frac{4}{3}\right)-\left(\frac{4}{5}-1\right)+\left(\frac{7}{5}+2\right)\)
B = \(\left(-3+\frac{3}{4}-\frac{1}{3}\right):\left(5+\frac{2}{5}-\frac{2}{3}\right)\)
C = \(\left(\frac{3}{5}-\frac{4}{5}\right).\left(\frac{2}{7}-\frac{3}{14}\right)-\left(\frac{5}{9}-\frac{7}{27}\right).\left(1-\frac{3}{5}\right)+\left(1-\frac{11}{12}\right).\left(1-\frac{11}{12}\right)\)
Tính:
a)\(\left\{\left[\left(6,2:0,31-\frac{5}{6}.0,9\right).0,2+0,15\right]:0,2\right\}:\left[\left(2+1\frac{4}{11}:0,1\right).\frac{1}{33}\right]\)
b)\(0,4\left(3\right)+0,6\left(2\right)-2\frac{1}{2}.\left[\left(\frac{1}{2}+\frac{1}{3}:0,5\left(8\right)\right)\right]:\frac{50}{53}\)
c)\(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}\)
Tính:
\(\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
Thực hiện phép tính:
a,\(25\frac{3}{5}:\left(\frac{-2}{3}\right)-15\frac{3}{5}:\left(\frac{-2}{3}\right)\)
b,\(9.\left(\frac{-2}{3}\right)^3+\frac{1}{2}:5\)
c,\(\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
tính \(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{2016}\left(1+2+3+...+2016\right)\)
Tính B = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+4+...+16\right)\)
tính
a) \(3^{-2}.\left[\left(\frac{2}{3}\right)^{-4}\right].\left[\left(-1\frac{1}{2}\right)^{-3}\right]\)
b) \(\left[\left(0.02\right)^{-3}\right].10^{-4}.\left(\frac{4}{5}\right)^{-2}\)
c) \(\left[2^{-2}-\frac{3}{4}^{-4}.\left(\frac{-1}{2}^2\right)\right]:\left(10^{-1}+1\right)\)
Tính
\(\frac{\left(-5\right).\left(-0,9\right)^{2^{ }}}{\left(1\frac{1}{2}\right)^{4^{ }}.\left(-3\frac{1}{3}\right)^{3^{ }}.\left(-1\right)^{2015}}\)