Bài 2: Tích phân

NL

tính các tích phân

1.\(\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}}e^{\sin x}\cos xdx\)

2.\(\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}}e^{2\cos x+1}\sin xdx\)

3,\(\int_1^e\dfrac{e^{2lnx+1}}{x}dx\)

4.\(\int_0^1xe^{x^2+2}dx\)

AH
11 tháng 1 2018 lúc 23:03

Ở tất cả các dạng bài như thế này em chỉ cần ghi nhớ công thức:

\(d(u(x))=u'(x)dx\)

Câu 1)

Ta có \(I_1=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\sin x}\cos xdx=\int _{\frac{\pi}{4}}^{\frac{\pi}{2}}e^{\sin x}d(\sin x)\)

Đặt \(\sin x=t\Rightarrow I_1=\int ^{1}_{\frac{\sqrt{2}}{2}}e^tdt=\left.\begin{matrix} 1\\ \frac{\sqrt{2}}{2}\end{matrix}\right|e^t=e-e^{\frac{\sqrt{2}}{2}}\)

Câu 2)

\(I_2=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}e^{2\cos x+1}\sin xdx=\frac{-1}{2}\int ^\frac{\pi}{2}_{\frac{\pi}{4}}e^{2\cos x+1}d(2\cos x+1)\)

Đặt \(2\cos x+1=t\Rightarrow I_2=\frac{-1}{2}\int ^{1}_{1+\sqrt{2}}e^tdt\)

\(=\frac{-1}{2}.\left.\begin{matrix} 1\\ 1+\sqrt{2}\end{matrix}\right|e^t=\frac{-1}{2}(e-e^{1+\sqrt{2}})\)

Bình luận (0)
AH
11 tháng 1 2018 lúc 23:08

Câu 3:

Có \(I_3=\int ^{e}_{1}\frac{e^{2\ln x+1}}{x}dx=\int ^{e}_{1}e^{2\ln x+1}d(\ln x)\)

\(=\frac{1}{2}\int ^{e}_{1}e^{2\ln x+1}d(2\ln x+1)\)

Đặt \(2\ln x+1=t\Rightarrow I_3=\frac{1}{2}\int ^{3}_{1}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 1\end{matrix}\right|e^t=\frac{1}{2}(e^3-e)\)

Câu 4:

\(I_4=\int ^{1}_{0}xe^{x^2+2}dx=\frac{1}{2}\int ^{1}_{0}e^{x^2+2}d(x^2+2)\)

Đặt \(x^2+2=t\Rightarrow I_4=\frac{1}{2}\int ^{3}_{2}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 2\end{matrix}\right|e^t=\frac{1}{2}(e^3-e^2)\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
KD
Xem chi tiết
HK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
ML
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết