\(S=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{100}\left(1+2+3+...+100\right)\)
\(=1+\dfrac{1}{2}.\dfrac{2\left(1+2\right)}{2}+\dfrac{1}{3}.\dfrac{3\left(1+3\right)}{2}+\dfrac{1}{4}.\dfrac{4\left(1+4\right)}{2}+...+\dfrac{1}{100}.\dfrac{100\left(1+100\right)}{2}\)
\(=1+\dfrac{2\left(1+2\right)}{2.2}+\dfrac{3\left(1+3\right)}{2.3}+\dfrac{4\left(1+4\right)}{2.4}+...+\dfrac{100\left(1+100\right)}{2.100}\)
\(=1+\dfrac{1+2}{2}+\dfrac{1+3}{2}+\dfrac{1+4}{2}+...+\dfrac{1+100}{2}\)
\(=1+\dfrac{3+4+5+...+101}{2}\)
\(=1+\dfrac{\dfrac{99\left(101+3\right)}{2}}{2}\)
\(=1+2574=2575\)
\(\)