Violympic toán 6

NS

tính tổng

a)\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)

b)\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

c)\(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{7.10}+...+\frac{2}{93.95}\)

BT
24 tháng 3 2019 lúc 18:12

a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)

=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))

= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))

=9(1-\(\frac{1}{100}\))

A=\(\frac{891}{100}\)

b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))

=1-\(\frac{1}{30}\)

B=\(\frac{29}{30}\)

Bình luận (0)
NT
24 tháng 3 2019 lúc 18:38

a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)

\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9.\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)

\(=1-\dfrac{1}{30}\)

\(=\dfrac{29}{30}\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
TD
Xem chi tiết
VH
Xem chi tiết
TA
Xem chi tiết
PD
Xem chi tiết
HN
Xem chi tiết
NS
Xem chi tiết
PN
Xem chi tiết
TV
Xem chi tiết