Đặt \(t=\sqrt{1-x}\)
\(\Rightarrow\begin{cases}x=1-t^2\\dx=-2tdt\end{cases}\) \(\Leftrightarrow\frac{x^2dx}{\sqrt{1-x}}\)\(=\frac{\left(1-t^2\right)\left(-2tdt\right)}{t}=-2\left(1-2t^2+3t^4-t^6\right)dt\)
Vậy : \(\int\frac{x^3dx}{\sqrt{1-x}}=\int\left(-2+4t^2-6t^4+2t^6\right)dt=-2t+\frac{4}{3}t^3-\frac{6}{5}t^5+\frac{2}{7}t^7+C\)
= \(-2\sqrt{1-x}+\frac{4}{3}\left(1-x\right)\sqrt{1-x}-\frac{6}{5}\left(1-x\right)^2\sqrt{1-x}+\frac{2}{7}\left(1-x\right)^3\sqrt{1-x}+C\)