Bài 3a. Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

BD

Tìm các nguyên hàm sau :

a) \(\int3x5^{2x}dx\)                               b) \(\int\left(x^2+2e^x\right)dx\)

c) \(\int\frac{x^4}{x^2-1}dx\)                                d) \(\int\frac{dx}{\sqrt{4x+1}+\sqrt{4x-2}}\)

BH
19 tháng 3 2016 lúc 20:47

a) Theo công thức 3) trong bảng nguyên hàm ta có :

\(\int3^x5^{2x}dx=\int3^x\left(25\right)^xdx=\int\left(75\right)^xdx=\frac{75^x}{\ln75}+C\)

b) Áp dụng các công thức I, II ( định lí 4.2) và 2), 3) trong bảng nguyên hàm ta có 

\(\int\left(x^2+2e^x\right)dx=\int x^{2^{ }}dx+2\int e^xdx=\frac{1}{3}x^3+2e^x+C\)

c) \(\int\frac{x^4}{x^2-1}dx=\int\frac{x^4-1+1}{x^2-1}dx=\int\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2-1}dx+\int\frac{dx}{x^2-1}\)

                     \(=\int\left(x^2-1\right)dx+\int\frac{dx}{x^2-1}\)

                     \(=\frac{x^3}{3}+x+\frac{1}{2}\ln\left|\frac{x-1}{x+1}\right|+C\)

d) Nhân tử số và mẫu số của biểu thức dưới dấu nguyên hàm với biểu thức liên hợp với mẫu số ta thu được.

\(\int\frac{dx}{\sqrt{4x+1}+\sqrt{4x-2}}=\int\frac{\sqrt{4x+1}-\sqrt{4x-2}}{3}dx\)

                         \(=\frac{1}{3.4}\int\left(4x+1\right)^{\frac{1}{2}}d\left(4x+1\right)-\frac{1}{3.4}\int\left(4x-2\right)^{\frac{1}{2}}d\left(4x-2\right)\)

                         \(=\frac{1}{12}\left[\sqrt{\left(4x+1\right)^3}-\sqrt{\left(4x-2\right)^3}\right]+C\)

Bình luận (0)

Các câu hỏi tương tự
DQ
Xem chi tiết
BD
Xem chi tiết
LP
Xem chi tiết
DQ
Xem chi tiết
PV
Xem chi tiết
NN
Xem chi tiết
ML
Xem chi tiết
NB
Xem chi tiết
PA
Xem chi tiết