Bài 2: Tích phân

TN

Tính tích phân bằng định nghĩa và các tính chất:

1. \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx\)

2. \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx\)

3. \(\int\limits^2_1\frac{2x^3-4x+5}{x}dx\)

4. \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx\)

NL
29 tháng 3 2019 lúc 17:10

1/ \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx=\left(\frac{x^2}{2}+lnx-\frac{1}{x}\right)|^e_1=\frac{e^2}{2}-\frac{1}{e}+\frac{3}{2}\)

2/ \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx=\int\limits^2_1\left(x\sqrt{x}+1\right)dx=\int\limits^2_1\left(x^{\frac{3}{2}}+1\right)dx\)

\(=\left(\frac{2}{5}.x^{\frac{5}{2}}+x\right)|^2_1=\frac{8\sqrt{2}-7}{5}\)

3/

\(\int\limits^2_1\frac{2x^3-4x+5}{x}dx=\int\limits^2_1\left(2x^2-4+\frac{5}{x}\right)dx=\left(\frac{2}{3}x^3-4x+5lnx\right)|^2_1=\frac{2}{3}+5ln2\)

4/ \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx=\int\limits^2_1\left(6x^2-2x\right)dx=\left(2x^3-x^2\right)|^2_1=11\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết