Violympic toán 7

DX

Tính S theo n ( \(n\in\) N*) 

\(S=2^{n-1}+2.2^{n-2}+3.2^{n-3}+...+\left(n-1\right).2+n\) 

NM
2 tháng 1 2022 lúc 21:43

Ta có \(2S=2^n+2\cdot2^{n-1}+3\cdot2^{n-2}+...+\left(n-1\right)\cdot2^2+2n\\ \Rightarrow2S-S=2^n+\left(2\cdot2^{n-1}-2^{n-1}\right)+\left(3\cdot2^{n-2}-2\cdot2^{n-2}\right)+...+2n-n\\ \Rightarrow S=2^n+2^{n-1}+2^{n-2}+...+2^2+2-n\\ \Rightarrow S=2\left(2^n-1\right)-n=2^{n+1}-\left(n+2\right)\)

Bình luận (0)
NV
3 tháng 1 2022 lúc 11:09

\(S=2^{n-1}+2.2^{n-2}+3.2^{n-3}+...+\left(n-1\right).2+n\)

\(\text{Đặt:}S_n=1.2^{n-1}+2.2^{n-2}+3.2^{n-3}+...+\left(n-1\right).2^1+n\left(1\right)\text{ Với }n\ge1\)

\(\text{Dễ thấy:}S_1=1\)

\(\text{Từ (1) ta có:}\)

\(2S_n+\left(n+1\right)=1.2^n+2.2^{n-1}+3.2^{n-2}+...+\left(n-1\right).2^2+n.2^1+\left(n+1\right)=S_{n+1}\) \(\Rightarrow S_n=2.S_{n-1}+n\)

\(\Leftrightarrow\left(S_n+n+2\right)=2\left(S_{n-1}+\left(n-1\right)+2\right)=2^2\left(S_{n-2}+\left(n-2\right)+2\right)=...=2^{n-1}\left(S_1+\left(1\right)+2\right)=2^{n-1}.4=2^{n+1}\)\(\text{ Do đó ta có:}S_n=2^{n+1}-\left(n+2\right)\)

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
NU
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
TK
Xem chi tiết
TH
Xem chi tiết