Violympic toán 7

DH

Tính tổng

S = \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+....+\dfrac{2n+1}{[n\left(n+1\right)]^2}\)

AH
21 tháng 2 2019 lúc 0:56

Lời giải:

Xét số hạng tổng quát:

\(\frac{2n+1}{[n(n+1)]^2}=\frac{1}{n(n+1)}.\frac{2n+1}{n(n+1)}=\frac{n+1-n}{n(n+1)}.\frac{n+(n+1)}{n(n+1)}\)

\(=\left(\frac{1}{n}-\frac{1}{n+1}\right)\left(\frac{1}{n}+\frac{1}{n+1}\right)=\frac{1}{n^2}-\frac{1}{(n+1)^2}\)

Do đó:

\(S=\frac{3}{(1.2)^2}+\frac{5}{(2.3)^2}+....+\frac{2n+1}{[n(n+1)]^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{n^2}-\frac{1}{(n+1)^2}\)

\(=1-\frac{1}{(n+1)^2}\)

Bình luận (0)

Các câu hỏi tương tự
VP
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
CC
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
TQ
Xem chi tiết
TV
Xem chi tiết