Bài 12: Tính chất của phép nhân

CY

Tính nhanh:

a) \(P=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)

b) \(Q=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)

SK
9 tháng 1 2020 lúc 21:03

\(b\)) \(Q=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)

Bình luận (0)
 Khách vãng lai đã xóa
SK
9 tháng 1 2020 lúc 21:09

\(a\)) Mình giải theo cách khác:

Chú ý rằng : \(\frac{3}{2.5}=\frac{1}{2}-\frac{1}{5};\frac{3}{5.8}=\frac{1}{5}-\frac{1}{8};\frac{3}{8.11}=\frac{1}{8}-\frac{1}{11};...;\frac{3}{17.20}=\frac{1}{17}-\frac{1}{20}\)

Do đó: \(P=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
SK
Xem chi tiết
JJ
Xem chi tiết
JJ
Xem chi tiết
PP
Xem chi tiết
PL
Xem chi tiết
KH
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết