A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\)
A.3=\(3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\right)\)
A.3=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\)
A.3-A=\(\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^8}\right)\)
A.2=\(1-\dfrac{1}{3^8}\)
A=\(\dfrac{1-\dfrac{1}{3^8}}{2}=\dfrac{3280}{6561}\)
Kết quả : \(\dfrac{3316}{6561}\)