Bài 2: Giới hạn của hàm số

MA

Tính giới hạn:

\(\lim\limits_{x->1}\dfrac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)

KB
2 tháng 5 2022 lúc 0:22

Ta có : (...) = \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x^3}-\left(x+1\right)-\left[\sqrt[3]{x^2+7}-\left(x+1\right)\right]}{x^2-1}\)

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x^3}-\left(x+1\right)}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{5-x^3-\left(x+1\right)^2}{\left(\sqrt{5-x^3}+x+1\right)\left(x^2-1\right)}\)  

\(=\lim\limits_{x\rightarrow1}\dfrac{-x^3-x^2-2x+4}{...}\)  \(=\lim\limits_{x\rightarrow1}\dfrac{-\left(x^2+2x+4\right)\left(x-1\right)}{...}\)   

\(\lim\limits_{x\rightarrow1}\dfrac{-\left(x^2+2x+4\right)}{\left(x+1\right)\left(\sqrt{5-x^3}+x+1\right)}=\dfrac{-7}{8}\)

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-\left(x+1\right)}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{x^2+7-x^3-3x^2-3x-1}{\left(x^2-1\right)\left[\sqrt[3]{\left(x+7\right)^2}+\left(x+1\right)\sqrt[3]{x^2+7}+\left(x+1\right)^2\right]}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{-\left(x^2+3x+6\right)\left(x-1\right)}{...}\)  

\(=\lim\limits_{x\rightarrow1}\dfrac{-\left(x^2+3x+6\right)}{\left(x+1\right)\left[\sqrt[3]{\left(x^2+7\right)^2}+\sqrt[3]{x^2+7}\left(x+1\right)+\left(x+1\right)^2\right]}\)

\(=\dfrac{-\left(1+3+6\right)}{\left(1+1\right)\left(4+2.2+4\right)}=\dfrac{-5}{12}\)

Suy ra : \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}=\dfrac{-7}{8}+\dfrac{5}{12}=\dfrac{-11}{24}\)

Bình luận (0)
KB
2 tháng 5 2022 lúc 0:41

Cách 2 : Tách : \(\sqrt{5-x^3}-2-\left(\sqrt[3]{x^2+7}-2\right)\) -> Dùng liên hợp 

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
SK
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
LN
Xem chi tiết
TH
Xem chi tiết
LN
Xem chi tiết