Ôn tập toán 8

KL

Tính giá trị của biểu thức a+ b+ c4, biết rằng a + b + c = 0 và :

a) a+ b+ c2 = 2

b) a+ b+ c2 = 1

HN
22 tháng 9 2016 lúc 9:49

Ta có \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

+) Nếu \(a^2+b^2+c^2=2\) thì \(ab+bc+ac=\frac{-2}{2}=-1\Leftrightarrow\left(ab+bc+ac\right)^2=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)

Ta có : \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Leftrightarrow a^4+b^4+c^2+2=4\Leftrightarrow a^4+b^4+c^4=2\)

+ Nếu \(a^2+b^2+c^2=1\) làm tương tự

Bình luận (0)
CT
15 tháng 7 2017 lúc 23:54

a+b+c=0

=> (a+b+c)2=0

=> a2+b2+c2+2ab+2bc+2ac=0

=> 2(ab+bc+ac)=-1

=> ab+bc+ac=\(\dfrac{-1}{2}\)

=> (ab+bc+ac)2=\(\dfrac{1}{4}\)

=> a2b2+b2c2+a2c2+2ab2c+2abc2+2a2bc=\(\dfrac{1}{4}\)

=> a2b2+b2c2+a2c2+2abc(a+b+c)=\(\dfrac{1}{4}\)

=> a2b2+b2c2+a2c2=\(\dfrac{1}{4}\)

Ta có: a2+b2+c2=1

=> (a2+b2+c2)2=1

=> a4+b4+c4+2a2b2+2b2c2+2a2c2=1

=> a4+b4+c4=4

Bình luận (0)