Chương I - Căn bậc hai. Căn bậc ba

H24

Tính

\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)

AH
4 tháng 7 2019 lúc 23:02

Lời giải:
\(\frac{1}{(b-c)(a^2+ac-b^2-bc)}+\frac{1}{(c-a)(b^2+ab-c^2-ac)}+\frac{1}{(a-b)(c^2+bc-a^2-ab)}\)

\(=\frac{1}{(b-c)[(a^2-b^2)+(ac-bc)]}+\frac{1}{(c-a)[(b^2-c^2)+(ab-ac)]}+\frac{1}{(a-b)[(c^2-a^2)+(bc-ab)]}\)

\(=\frac{1}{(b-c)(a-b)(a+b+c)}+\frac{1}{(c-a)(b-c)(b+c+a)}+\frac{1}{(a-b)(c-a)(c+a+b)}\)

\(=\frac{c-a}{(b-c)(a-b)(c-a)(a+b+c)}+\frac{a-b}{(a-b)(c-a)(b-c)(a+b+c)}+\frac{b-c}{(a-b)(c-a)(b-c)(a+b+c)}\)

\(=\frac{c-a+a-b+b-c}{(a-b)(b-c)(c-a)(a+b+c)}=0\)

Bình luận (0)

Các câu hỏi tương tự
PK
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
HD
Xem chi tiết
I9
Xem chi tiết