E= \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{100}\right)\)
E= \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)
E= \(\dfrac{1}{100}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
E= \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{100}\right)\)
E= \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)
E= \(\dfrac{1}{100}\)
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{100}\right)\)
1. \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{99}\right)\left(1-\dfrac{1}{100}\right)\)
2. \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(A=\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right)...\left(1-\dfrac{1}{1+2+3+...+100}\right)\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{7}\right)\left(1-\dfrac{1}{8}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\)
Tính D = \(\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
1: Tính B
\(B=1+\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\cdot\left(1+2+3\right)+\dfrac{1}{4}\cdot\left(1+2+3+4\right)+...+\dfrac{1}{100}\cdot\left(1+2+3+...+100\right)\)
Tìm tích:
\(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{100}-1\right)\)
\(Tìm\) \(x\)∈\(Z\)\(,\) \(biết\)\(:\)
\(a\)) \(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+...+99+100=100\)
\(b\)) \(213-x.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right):\left(1-\dfrac{1}{2^{2020}}\right)=13\)