Violympic toán 7

YT

Cho biểu thức \(P=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

Kết quả phép tính \(P+\dfrac{1997}{1999}\) là ?

LU
12 tháng 3 2017 lúc 19:26

-1/2000

Bình luận (1)
HQ
12 tháng 3 2017 lúc 19:42

\(P=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(\Rightarrow P=\dfrac{1}{1999.2000}-\dfrac{1}{1998.1999}-\dfrac{1}{1997.1998}-\dfrac{1}{2.3}-\dfrac{1}{1.2}\)

\(\Rightarrow P=\dfrac{1}{1999}-\dfrac{1}{2000}-\dfrac{1}{1998}+\dfrac{1}{1999}-\dfrac{1}{1997}+\dfrac{1}{1998}-...-1+\dfrac{1}{2}\)

\(\Rightarrow P=\dfrac{2}{1999}-\dfrac{1}{2000}-1\)

\(\Rightarrow P+\dfrac{1997}{1999}=\dfrac{2}{1999}+\dfrac{1997}{1999}-\dfrac{1}{2000}-1\)

\(\Rightarrow P+\dfrac{1997}{1999}=1-1-\dfrac{1}{2000}=\dfrac{-1}{1200}\)

Vậy \(P+\dfrac{1997}{1999}=\dfrac{-1}{2000}\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
VD
Xem chi tiết
VD
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
GJ
Xem chi tiết
MD
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết