Ta có: \(y' = {\left( {\tan x} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\)
Vậy \(y'\left( {\frac{{3\pi }}{4}} \right) = \frac{1}{{{{\cos }^2}\left( {\frac{{3\pi }}{4}} \right)}} = 2\).
Ta có: \(y' = {\left( {\tan x} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\)
Vậy \(y'\left( {\frac{{3\pi }}{4}} \right) = \frac{1}{{{{\cos }^2}\left( {\frac{{3\pi }}{4}} \right)}} = 2\).
Tính đạo hàm của các hàm số sau:
a) \(y = \sin 3x\);
b) \(y = {\cos ^3}2x\);
c) \(y = {\tan ^2}x\);
d) \(y = \cot \left( {4 - {x^2}} \right)\).
Tìm đạo hàm của các hàm số:
a) \(y = \sqrt[4]{x}\) tại \(x = 1\);
b) \(y = \frac{1}{x}\) tại \(x = - \frac{1}{4}\);
Tính đạo hàm của các hàm số sau:
a) \(y = 2{{\rm{x}}^3} - \frac{{{x^2}}}{2} + 4{\rm{x}} - \frac{1}{3}\);
b) \(y = \frac{{ - 2{\rm{x}} + 3}}{{{\rm{x}} - 4}}\);
c) \(y = \frac{{{x^2} - 2{\rm{x}} + 3}}{{{\rm{x}} - 1}}\); d) \(y = \sqrt {5{\rm{x}}} \).
Tìm đạo hàm của các hàm số:
a) \(y = {9^x}\) tại \(x = 1\);
b) \(y = \ln x\) tại \(x = \frac{1}{3}\).
a) Dùng định nghĩa tỉnh đạo hàm của hàm số \(y = x\) tại điểm \(x = {x_0}\).
b) Nhắc lại đạo hàm của các hàm số \(y = {x^2},y = {x^3}\) đã tìm được ở bài học trước. Từ đó, dự đoán đạo hàm của hàm số \(y = {x^n}\) với \(n \in {\mathbb{N}^*}\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = 2{x^4} - 5{x^2} + 3\);
b) \(y = x{e^x}\).
Tính đạo hàm của hảm số \(y = {x^{10}}\) tại \(x = - 1\) và \(x = \sqrt[3]{2}\).
Cho hàm số \(u = \sin x\) và hàm số \(y = {u^2}\).
a) Tính \(y\) theo \(x\).
b) Tính \(y{'_x}\) (đạo hàm của \(y\) theo biến \(x\)), \(y{'_u}\) (đạo hàm của \(y\) theo biến \(u\)) và \(u{'_x}\) (đạo hàm của \(u\) theo biến \(x\)) rồi so sánh \(y{'_x}\) với \(y{'_u}.u{'_x}\).
Dùng định nghĩa, tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \(x = {x_0}\) với \({x_0} > 0\).