\(B=\frac{2.5-1}{2.5}+\frac{5.8-1}{5.8}+\frac{8.11-1}{8.11}+...+\frac{50.53-1}{50.53}\)
\(B=1-\frac{1}{2.5}+1-\frac{1}{5.8}+1-\frac{1}{8.11}+...+1-\frac{1}{50.53}\)
\(B=17-\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{50.53}\right)\)
\(B=17-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{50}-\frac{1}{53}\right)\)
\(B=17-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{53}\right)=\frac{1785}{106}\)