Ta có:
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{3^{2018}}\\ \Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)
Lấy 3A trừ A ta được:
\(2A=1-\dfrac{1}{3^{2018}}\\ \Rightarrow A=\dfrac{1-\dfrac{1}{3^{2018}}}{2}\)
Vậy \(A=\dfrac{1-\dfrac{1}{3^{2018}}}{2}\)