A=1+\(\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+........+\dfrac{1+2+.......+200}{200}\)
A=1+\(\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+.......+\dfrac{\dfrac{\left(1+200\right).200}{2}}{200}\)
A=\(\dfrac{2}{2}\)+\(\dfrac{3}{2}\)+......+\(\dfrac{200}{2}\)=\(\dfrac{2+3+.......+200}{2}\)=\(\dfrac{\dfrac{\left(2+200\right).\text{[}\left(200-2\right):1+1\text{]}}{2}}{2}\)=\(\dfrac{19701}{2}\)