Violympic toán 7

NT

Tính :

A = \(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right).\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)-\)\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right).\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right)\)

Giúp em với ạ @Nguyễn Việt Lâm,@Akai Haruma

AH
25 tháng 5 2019 lúc 21:06

Lời giải:

Đặt: \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}=a\).

Biểu thức $A$ lúc đó được biểu diễn như sau:

\(A=a(a-1+\frac{1}{2020^2})-(a+\frac{1}{2020^2})(a-1)\)

\(=a(a-1)+\frac{a}{2020^2}-[a(a-1)+\frac{a-1}{2020^2}]\)

\(=\frac{1}{2020^2}\)

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
H24
Xem chi tiết
CN
Xem chi tiết
TD
Xem chi tiết
NS
Xem chi tiết
KS
Xem chi tiết
TH
Xem chi tiết
TM
Xem chi tiết
NB
Xem chi tiết