Chương I - Căn bậc hai. Căn bậc ba

DH

Tính:

a) \(\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3}-\sqrt{2}}\)

b)\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}\)

AH
29 tháng 5 2019 lúc 0:03

Lời giải:
a) Đặt \(\sqrt{3+\sqrt{2}}=a; \sqrt{3-\sqrt{2}}=b\Rightarrow \left\{\begin{matrix} a^2+b^2=6\\ a^2-b^2=2\sqrt{2}\\ ab=\sqrt{(3+\sqrt{2})(3-\sqrt{2})}=\sqrt{7}\end{matrix}\right.\)

\(A=\frac{a+b}{a-b}=\frac{(a+b)^2}{(a+b)(a-b)}=\frac{(a+b)^2}{a^2-b^2}=\frac{a^2+b^2+2ab}{a^2-b^2}\)

\(=\frac{6+2\sqrt{7}}{2\sqrt{2}}=\frac{3+\sqrt{7}}{\sqrt{2}}\)

b)

Đặt \(\sqrt{5+3\sqrt{2}}=a; \sqrt{5-3\sqrt{2}}=b\)

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=10\\ a^2-b^2=6\sqrt{2}\\ ab=\sqrt{(5+3\sqrt{2})(5-3\sqrt{2})}=\sqrt{25-(3\sqrt{2})^2}=\sqrt{7}\end{matrix}\right.\)

\(B=\frac{\sqrt{9(5+3\sqrt{2})}+\sqrt{9(5-3\sqrt{2})}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}=\frac{3(a+b)}{a-b}\)

\(=\frac{3(a+b)^2}{a^2-b^2}=\frac{3(a^2+b^2+2ab)}{a^2-b^2}=\frac{3(10+2\sqrt{7})}{6\sqrt{2}}\)

\(=\frac{5+\sqrt{7}}{\sqrt{2}}\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
LT
Xem chi tiết
AH
Xem chi tiết
DQ
Xem chi tiết
NM
Xem chi tiết
LH
Xem chi tiết
HL
Xem chi tiết
QT
Xem chi tiết
HN
Xem chi tiết