Violympic toán 7

VK

Tìm x,y,z biết:

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}\)\(x^{10}.y^{10}=1024\)

NH
7 tháng 12 2017 lúc 12:26

Ta có :

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}\)

\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(x^2+y^2\right)\)

\(\Leftrightarrow5y^2-5x^2=3x^2+3y^2\)

\(\Leftrightarrow5y^2-3y^2=3x^2+5x^2\)

\(\Leftrightarrow2y^2=8x^2\)

\(\Leftrightarrow y^2=4x^2\)

\(\Leftrightarrow y^{10}=1024.x^{10}\)

Lại có : \(x^{10}.y^{10}=1024\)

\(\Leftrightarrow x^{10}.x^{10}.1024=1024\)

\(\Leftrightarrow x^{20}.1024=1024\)

\(\Leftrightarrow x^{20}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

+) Với \(x=1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

+) Với \(x=-1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ..

Bình luận (0)
MS
7 tháng 12 2017 lúc 12:50

\(x^{10}.y^{10}=1024\Leftrightarrow x^2.y^2=4\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{y^2-x^2+x^2+y^2}{3+5}=\dfrac{2y^2}{8}=\dfrac{y^2}{4}\)(1)

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{x^2+y^2-y^2+x^2}{5-3}=\dfrac{2x^2}{2}=\dfrac{x^2}{1}\)(2)

Từ (1) và (2) ta có: \(\dfrac{y^2}{4}=\dfrac{x^2}{1}\)

Lúc này bạn có: \(\left\{{}\begin{matrix}x^2y^2=4\\\dfrac{y^2}{4}=\dfrac{x^2}{1}\end{matrix}\right.\) dễ dàng tìm được nghiệm của phương trình

Bình luận (0)

Các câu hỏi tương tự
DS
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TK
Xem chi tiết