Violympic toán 7

NT

Tìm x,y\(\in\)N biết

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-15^y=1679\)

NL
1 tháng 1 2019 lúc 20:04

- Với \(y=0\)

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=1680=5.6.7.8\)

\(\Rightarrow2^x+1=5\Rightarrow2^x=4\Rightarrow x=2\)

- Với \(y>0\Rightarrow15^y=5^y.3^y⋮5\)

Do \(2^x\ne0\) \(\forall x\), nhân cả 2 vế với \(2^x\) ta được:

\(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-15^y.2^x=1679.2^x\)

Ta có \(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)\) là tích của 5 số tự nhiên liên tiếp

\(\Rightarrow2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\) \(\forall x\)

\(15^y⋮5\Rightarrow15^y.2^x⋮y\)

\(\Rightarrow VT\) chia hết cho 5

\(2^x\) không chia hết cho 5; \(1679\) không chia hết cho 5

\(\Rightarrow VP\) không chia hết cho 5

\(\Rightarrow\) không tồn tại x, y thỏa mãn

Vậy pt đã cho có nghiệm duy nhất \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Bình luận (0)