Ôn tập toán 8

DN

Tìm \(x,y\in Z\) : \(2y^2x+x+y+1=x^2+2y^2+xy\)

H24
1 tháng 3 2017 lúc 12:41

Làm lại:

\(2\left(x-1\right)y^2-\left(x-1\right)y=x^2-x-1=x\left(x-1\right)-1\)

với x=1 vô nghiệm

Chia hai vế cho (x-1) khác 0

\(2y^2-y=x-\dfrac{1}{x-1}\)

VP Nguyên x.y, nguyên \(\Rightarrow\dfrac{1}{x-1}\in Z\)

\(\Rightarrow x-1=U\left(1\right)=\left\{-1,1\right\}\Rightarrow x=\left\{0,2\right\}\)

\(\left\{\begin{matrix}\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\\2y^2-y=1\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\\\left[\begin{matrix}y=1\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Kết luận có các cặp nghiệm: (x,y)=(0,1);(2,1)

Bình luận (0)
H24
1 tháng 3 2017 lúc 7:24

\(\left(2y^2x-2y^2\right)+\left(x-xy\right)+\left(1-x^2\right)=0\)

\(\Leftrightarrow2y^2\left(x-1\right)-y\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-y-x-1\right)=0\)

\(\left[\begin{matrix}x=1\\2y^2-y-x-1=0\end{matrix}\right.\) ok. {hết thời gian rồi}

Bình luận (3)

Các câu hỏi tương tự
NL
Xem chi tiết
NL
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
TK
Xem chi tiết
DN
Xem chi tiết
NN
Xem chi tiết