Ôn tập toán 7

HA

Tìm x:

\(\frac{x}{2}=\frac{y}{4}\)và x4.y4 =16

IM
16 tháng 9 2016 lúc 22:02

\(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^8}{2^8}=\frac{y^8}{4^8}=\frac{x^4.y^4}{2^4.4^4}=\frac{16}{8^4}=\frac{1}{2^8}\)

\(\Rightarrow\begin{cases}x^4=1\\y^4=2^8\end{cases}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm x\end{cases}\)

Mà 2 và 4 cùng dấu 

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)

Bình luận (0)
SG
16 tháng 9 2016 lúc 22:05

Ta có:

\(\frac{x}{2}=\frac{y}{4}\) => \(\frac{x^4}{2^4}=\frac{y^4}{4^4}\) => \(\frac{x^4}{16}=\frac{y^4}{256}\)

=> \(\frac{x^8}{16^2}=\frac{y^8}{256^2}=\frac{x^4.y^4}{16.256}=\frac{16}{16.256}=\frac{1}{256}\)

=> \(\begin{cases}x^8=\frac{1}{256}.16^2\\y^8=\frac{1}{256}.256^2\end{cases}\)=> \(\begin{cases}x^8=1=1^8=\left(-1\right)^8\\y^8=256=2^8=\left(-2\right)^8\end{cases}\)=> \(\begin{cases}x\in\left\{1;-1\right\}\\y\in\left\{2;-2\right\}\end{cases}\)

Vậy ta tìm được 2 cặp giá trị (x;y) thỏa mãn đề bài là: (1;2) ; (-1;-2)

Bình luận (0)

Các câu hỏi tương tự
KW
Xem chi tiết
DQ
Xem chi tiết
ES
Xem chi tiết
BY
Xem chi tiết
HA
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
CN
Xem chi tiết
PT
Xem chi tiết