`A=(x+6)+(x+10)+(x+14)+....+(x+46)=308`
`=>A = x+6+x+10+x+14+.....+x+46=308`
`= (x+x+x+......+x)+(6+10+14+.....+46)=308`
Xét dãy số : `6+10+14+.....+46`
Khoảng cách: `4`
Số hạng :
`(46-6)/4 + 1 = 11(số-hạng)`
Tổng:
`(46+6)xx11:2=286`
`=> 11x + 286 = 308`
`11x = 308 - 286`
`11x = 22`
`x=22:11`
`x=2`
Vậy `x=2`
`#LeMichael`
\(A=\left(x+6\right)+\left(x+10\right)+...+\left(x+46\right)=308\)
\(\Rightarrow A=\left(x+x+x+...+x\right)+\left(6+10+14+...+46\right)=308\)
\(\Rightarrow A=11x+\left(52\times11:2\right)=308\)
\(\Rightarrow11x+286=308\)
\(\Rightarrow11x=22\Rightarrow x=2\)