a) \(\left(2x-5\right)^2=49\)
\(\left(2x-5\right)^2=\left(\pm7\right)^2\)
\(=>2x-5=7\) hoặc \(2x-5=-7\)
\(\cdot2x-5=7\) \(\cdot2x-5=-7\)
\(2x=5+7\) \(2x=-7+5\)
\(2x=12\) \(2x=-2\)
\(x=12:2\) \(x=-2:2\)
\(x=6\) \(x=-1\)
Vậy x=6 hoặc x=-1
b/ \(\left(2x+5\right)^2-\left(1-2x\right)^2=10\)
\(4x^2+20x+25-\left(1-4x+4x^2\right)=10\)
\(4x^2+20x+25-1+4x-4x^2=10\)
\(24x+24=10\)
\(24x=10-24\)
\(24x=-14\)
\(x=\frac{-14}{24}\)
\(x=\frac{-7}{12}\)
c/ \(\left(9-2x\right)^3=27\)
\(\left(9-2x\right)^3=3^3\)
\(9-2x=3\)
\(2x=9-3\)
\(2x=6\)
\(x=6:2\)
\(x=3\)
a/ (2x-5)^2=49
TH1: 2x-5=7
x=6
TH2: 2x-5=-7
x=-1