Đại số lớp 7

NH

Tìm x, y, z thuộc Q biết :

a) l x+ 19/5 l + l y+2017/2018 l + l z-2019l =0

dấu 'l' là giá trị tuyệt đối nha các bạn

b) l x-9/5 l+l y+3/4 l+ l z+ 7/2 l ≤ 0

dấu 'l' là giá trị tuyệt đói nha các bạn

HA
13 tháng 6 2017 lúc 8:12

a) Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0\forall x\in Q\)

\(\left|y+\dfrac{2017}{2018}\right|\ge0\forall y\in Q\)

\(\left|z-2019\right|\ge0\forall x\in Q\)

\(\Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|\ge0\forall x,y,z\in Q\)

Dấu \("="\) xảy ra khi \(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\).

b) Lại có:

\(\left|x-\dfrac{9}{5}\right|\ge0\forall x\in Q\)

\(\left|y+\dfrac{3}{4}\right|\ge0\forall y\in Q\)

\(\left|z+\dfrac{7}{2}\right|\ge0\forall z\in Q\)

\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,zQ\)

Mà theo đề bài:

\(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\forall\)

\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-\dfrac{9}{5}\right|=0\\\left|y+\dfrac{3}{4}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy .....

Bình luận (0)
PU
13 tháng 6 2017 lúc 8:15

a) \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\)

Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0;\left|y+\dfrac{2017}{2018}\right|\ge0;\left|z-2019\right|\ge0\)

Để \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\) thì:

\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\)

Vậy............................

b) Ta có: \(\left|x-\dfrac{9}{5}\right|\ge0;\left|y+\dfrac{3}{4}\right|\ge0;\left|z+\dfrac{7}{2}\right|\ge0\)

\(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\) thì:

\(\left|x-\dfrac{9}{5}\right|=\left|y+\dfrac{3}{4}\right|=\left|z+\dfrac{7}{2}\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy............................

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
TN
Xem chi tiết
PN
Xem chi tiết
HC
Xem chi tiết
ST
Xem chi tiết
TN
Xem chi tiết
PH
Xem chi tiết
NM
Xem chi tiết
DT
Xem chi tiết