Đại số lớp 7

ST

1. Cho \(f\left(x\right)=1+x^3+x^5+x^7+...+x^{101}\). Tính f(1); f(-1)( Câu này dễ nhất nè )

2. Tìm các số nguyên x, y, z, t thỏa mãn :

\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=2015\)

3. Cho 2 đa thức sau : \(f\left(x\right)=\left(x-1\right)\left(x+2\right);g\left(x\right)=x^3+ax^2+bx+2\)

Xác định a & b biết nghiệm đa thức f(x) cũng là nghiệm của g(x)

4. Tìm \(n\in Z\) sao cho \(2n-3⋮n+1\)

5. Cho đa thức : \(f\left(x\right)=ax^2+bx+c\). Biết rằng các giá trị của đa thức tại x = 0,

x = 1, x = -1 đều là những số nguyên. Chứng tỏ 2a, a+b, c là những số nguyên.

p/s: đề dài dài, chịu khó một tí nha mấy bạn, bạn nào làm đc câu nào thì làm nha, làm hết thì càng tốt

HY
8 tháng 4 2017 lúc 12:11

1,
Ta có f(1) = \(1^1+1^3+1^5+...+1^{101}\) = 1 + 1+ ...+1 = 51
..................................................................( 51 số 1 )

Lại có: f(-1) = \(1+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{101}\)= 1-1-1-...-1 = 1 -50 = -49
........................................................................................(50 số -1)

3, Ta có: \(\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Suy ra x=1 hoặc x=2 là nghiệm của f(x) đồng thời là nghiệm của g(x)
Vì x=1 là 1 nghiệm của g(x) nên ta có \(1^3+a.1^2+b.1+2=0\)
\(\Leftrightarrow a+b=-3\) (1)
Vì x=2 là 1 nghiệm của g(x) nên ta có \(2^3+a.2^2+b.2+2=0\)
\(\Leftrightarrow4a+2b=-10\)
=> 2a + b = -5 (2)
Trừ vế cho vế của (2) và (1) ta được
(2a+b) - (a+b) = -5 - (-3)
=> a = -2
Với a =-2 thay vào (1) ta được b= -1

4, Ta có 2n-3 = 2(n+1) - 5
Vì 2(n+1) chia hết cho n+1 nên 2n-3 chia hết cho n+1 khi 5 chia hết cho n+1
Hay n+1 thuộc Ư(5)={-5;-1;1;5}
Xét bảng sau:

n+1 -5 -1 1 5
n -6 -2 0 4


Vậy \(n\in\left\{-6;-2;0;4\right\}\)là các giá trị cần tìm

Bình luận (0)
HY
8 tháng 4 2017 lúc 17:13

5, • Ta có: f(0) là số nguyên
=> a.0 + b.0 +c là số nguyên
=> c là số nguyên
• Có f(1) là số nguyên
=> a.1 +b.1+ c là số nguyên
=> a+b+c là số nguyên
Mà c nguyên ( cmt )
=> a+b là số nguyên (1)
• f(-1) là số nguyên
=> a -b +c là số nguyên
Mà c nguyên => a-b là số nguyên (2)
Từ (1) và (2) => a+b+a-b là số nguyên
=> 2a là số nguyên

Bình luận (1)
ST
8 tháng 4 2017 lúc 11:18

Yangg; tú

Bình luận (0)
HY
8 tháng 4 2017 lúc 16:09

Đại số lớp 7

Bình luận (0)

Các câu hỏi tương tự
YN
Xem chi tiết
NT
Xem chi tiết
YN
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
PD
Xem chi tiết
ST
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết