\(a,25-y^2=8\left(x-2009\right)^2\)
Ta có : \(8\left(x-2009\right)^2\ge0\forall x\)
\(\Rightarrow25-y^2\ge0\forall y\)
\(\Leftrightarrow0< y^2\le25\\ \Rightarrow y\in\left\{1;2;3;4;5\right\}\)
Mà \(25-y^2⋮8\left(Vìx\in Z\right)\)
\(\Rightarrow y\in\left\{1;3;5\right\}\)(t/mãn y ∈ Z)
TH1: Với y = 1, ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow25-1^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=24\)
\(\Leftrightarrow\left(x-2009\right)^2=3\left(Vôlí\right)\)
⇒ TH1 loại
TH2: Với y = 3, ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow25-3^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=16\)
\(\Leftrightarrow\left(x-2009\right)^2=2\left(Vôlí\right)\)
⇒ TH2 loại
TH3: Với y = 5, ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow25-5^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=0\)
\(\Leftrightarrow\left(x-2009\right)^2=0\\ \Rightarrow x-2009=0\\ \Rightarrow x=2009\left(t/mx\in Z\right)\)
Vậy y = 5, x = 2009
\(b,x^3y=xy^3+1997\\ \Leftrightarrow x^3y-xy^3=1997\\ \Leftrightarrow xy\left(x^2-y^2\right)=1997\\ \Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)
Ta có : \(\left\{{}\begin{matrix}1997làsốnguyêntố\\xy\left(x+y\right)\left(x-y\right)làhợpsố\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)\in\varnothing\)
Vậy không tìm được x và y thõa mãn đề bài.