Áp dụng tính chất dẫy hữu tỉ số bằng nhau
Ta có : \(\frac{x^2+y^2}{x^2+1+y^2}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+1+y^2+x^2+1+y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+y^2+x^2+y^2+3}=1+\frac{x^2+y^2+x^2+y^2}{3}\)
Áp dụng tính chất dẫy hữu tỉ số bằng nhau
Ta có : \(\frac{x^2+y^2}{x^2+1+y^2}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+1+y^2+x^2+1+y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+y^2+x^2+y^2+3}=1+\frac{x^2+y^2+x^2+y^2}{3}\)
Tìm x, y, z biết rằng:
a) \(\frac{x-y}{3}=\frac{x+y}{2}=\frac{1}{2}\)
b) \(\frac{2x-5}{y+1}=\frac{x-1}{3y}=\frac{1}{3}\)
Tìm x, y, z biết:
\(\frac{x+y-3}{z}=\frac{y+z-1}{x}=\frac{x+y+2}{y}=\frac{1}{x+y+z}\)
Tìm các số thực x,y,z biết
\(\frac{x+y-3}{z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{1}{x+y+z}\)
1) Tìm x biết:
\(\frac{1+2y}{18}\) = \(\frac{1+4y}{24}\) = \(\frac{1+6y}{6x}\)
2) Tìm x, y, z biết:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Help me, please!!!!!
Tìm x, y, z biết rằng:
a) \(\frac{x-y}{3}=\frac{x+y}{2}=\frac{1}{2}\)
b) \(\frac{2x-5}{y+1}=\frac{x-1}{3y}=\frac{1}{3}\)
c) \(\frac{2x+5}{5}=\frac{y+6}{4}\) và 5x - 3y = -64
Tìm x;y;z biết \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x-2y+3z=-10
Tìm x, y biết:
a) \(\frac{x}{2}=\frac{y}{5}\) và x.y =10
b) 7x = 3y và x - y = 16
c) \(\frac{x+1}{x-1}=\frac{x-2}{x+3}\)
tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x=\frac{1}{20}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
2. Tìm x, y, z biết\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
3.Tìm x\(a,2009-\left|x-2009\right|=x\)
\(b,\left|3x+2\right|=\left|5x-3\right|\)