1) Ta có:
\(\frac{1+2y}{18}=\frac{1+4y}{24}\)\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)
=> 24 + 48y = 18 + 72y
=> 72y - 48y = 24 - 18
=> 24y = 6
\(\Rightarrow y=\frac{6}{24}=\frac{1}{4}\)
Thay \(y=\frac{1}{4}\) vào đề bài ta có:
\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+6.\frac{1}{4}}{6x}\)
\(\Rightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)
\(\Rightarrow\frac{3}{2}.\frac{1}{18}=\frac{5}{2}:6x\)
\(\Rightarrow\frac{1}{12}=\frac{5}{2}:6x\)
\(\Rightarrow6x=\frac{5}{2}:\frac{1}{12}=\frac{5}{2}.12=30\)
=> x = 30 : 6 = 5
Vậy \(x=5;y=\frac{1}{4}\)
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
\(=\frac{1}{x+y+z}\) (theo đề bài)
\(\Rightarrow x+y+z=\frac{1}{2}\)
Ta có: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=2\)
\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=2+1\)
\(\Rightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=3\)
\(\Rightarrow\frac{\frac{1}{2}+1}{x}=\frac{\frac{1}{2}+2}{y}=\frac{\frac{1}{2}-3}{z}=3\)
\(\Rightarrow\frac{3}{2}:x=\frac{5}{2}:y=\frac{-5}{2}:z=3\)
\(\Rightarrow\begin{cases}x=\frac{3}{2}:3=\frac{1}{2}\\y=\frac{5}{2}:3=\frac{5}{6}\\z=\frac{-5}{2}:3=\frac{-5}{6}\end{cases}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)