a.\(\left|5x-3\right|< 2\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3< 2\\-5x+3< 2\end{matrix}\right.\)
Trường hợp 1: 5x-3<2
\(\Leftrightarrow\)5x<5
\(\Leftrightarrow\)x<1(t/m điều kiện x thuộc Z)
Trường hợp 2:-5x+3<2
\(\Leftrightarrow\)-5x>-1
\(\Leftrightarrow\)x>\(\dfrac{1}{5}\)(t/m điều kiện x thuộc Z)
KL:Tự viết nha
b.\(\left|3x+1\right|>4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1>4\\-3x-1>4\end{matrix}\right.\)
Trường hợp 1: 3x+1>4
\(\Leftrightarrow\)3x>3
\(\Leftrightarrow\)x>1
Trường hợp 2:-3x-1>4
\(\Leftrightarrow\)-3x>5
\(\Leftrightarrow\)x>\(\dfrac{-5}{3}\)
KL:
\(a.\text{|}5x-3\text{|}< 2\)
⇔ \(-2< 5x-3< 2\)
+) \(5x-3>-2\text{ }\) ⇔ \(x>\dfrac{1}{5}\left(x\text{ ∈}Z\right)\)
+) \(5x-3< 2\text{⇔}x< 1\left(x\text{ ∈}Z\right)\)
KL : Vậy , nghiệm của BPT \(\dfrac{1}{5}< x< 1\left(x\text{ ∈}Z\right)\)
\(b.\text{|}3x+1\text{|}>4\)
⇔ \(3x+1>4\) hoặc \(3x+1< -4\)
⇔ \(x>1orx< -\dfrac{5}{3}\)
KL........