Ôn tập toán 7

KP

tìm x thuộc q, biết:

a.|2,5-x| =1,3 b. 1,6-|x-0,2| =0 c. |x-1,5|+|2,5-x| = 0 d. (x-\(\dfrac{1}{2}\))^2 = 0

e. (x-2)^2 = 1 f. (2x-1)^3 = -8

HA
16 tháng 6 2017 lúc 18:39

c) Ta có: \(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\forall x\in Q\\\left|2,5-x\right|\ge0\forall x\in Q\end{matrix}\right.\)

\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\forall x\in Q\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)

Vậy \(x=\left\{{}\begin{matrix}1,5\\2,5\end{matrix}\right.\).

e) \(\left(x-2\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x-2=\sqrt{1}\\x-2=-\sqrt{1}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\).

Mấy câu kia dễ rồi.

Bình luận (0)
AT
16 tháng 6 2017 lúc 20:12

sửa lại ý c của N.Anh

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(\left|x-1,5\right|+\left|2,5-x\right|\ge\left|x-1,5+2,5-x\right|=1\)

\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge1>0\)

mà theo đề thì \(\left|x-1,5\right|+\left|2,5-x\right|=0\)

\(\Rightarrow\) k có gt \(x\) nào tm yêu cầu đề bài

Bình luận (0)

Các câu hỏi tương tự
DG
Xem chi tiết
NM
Xem chi tiết
PM
Xem chi tiết
LH
Xem chi tiết
LA
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết