Chương I - Căn bậc hai. Căn bậc ba

DT

Tìm x ϵ N để biểu thức A =\(\dfrac{3}{\sqrt{x}-2}\) đạt giá trị:

a) Lớn nhất

b) Nhỏ nhất

GH
31 tháng 7 2023 lúc 21:55

ĐK: \(x\in N;x\ne4\)

a

Ta thấy trong 2 trường hợp \(\sqrt{x}-2>0\) và \(\sqrt{x}-2< 0\) thì Max A xảy ra trong trường hợp \(\sqrt{x}-2>0\Rightarrow\sqrt{x}-2>2\Rightarrow x>4\)

Mà \(x\in N\Rightarrow x\in\left\{5;6;7;....\right\}\Rightarrow x\ge5\Rightarrow\sqrt{x}\ge\sqrt{5}\)

\(\Rightarrow\sqrt{x}-2\ge\sqrt{5}-2\\ \Rightarrow\dfrac{3}{\sqrt{x}-2}\le\dfrac{3}{\sqrt{5}-2}\\ \Rightarrow A\le\dfrac{3}{\sqrt{5}-2}=6+3\sqrt{5}\)

Vậy Max A \(=6+3\sqrt{5}\) khi \(x=5\left(thỏa.mãn\right)\)

Bình luận (0)
GH
31 tháng 7 2023 lúc 21:59

b

ĐK:\(x\in N;x\ne4\)

Min A xảy ra khi \(\sqrt{x}-2< 0\) \(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)

Mà \(x\in N\Rightarrow x\in\left\{0;1;2;3\right\}\)

x0123
A     \(-\dfrac{3}{2}\)\(-3\)\(-\dfrac{6+3\sqrt{2}}{2}\)\(-6-3\sqrt{3}\)

 

Vậy min A \(=-6-3\sqrt{3}\) khi \(x=3\left(thỏa.mãn\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết