Ôn tập toán 7

VH

Tìm x để :

a ) ( x - \(\frac{1}{3}\) ) ( 5x + 2 ) > 0

b ) ( 5x + 3 ) ( 3x - 2 ) < 0

ND
5 tháng 11 2016 lúc 22:53

a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)

<=> \(\left[\begin{array}{nghiempt}x-\frac{1}{3}>0\\5x+3< 0\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x-\frac{1}{3}< 0\\5x+3>0\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\5x< 3\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\5x>3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< \frac{3}{5}\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\x>\frac{3}{5}\end{array}\right.\)

Vậy...

Bình luận (3)
TL
5 tháng 11 2016 lúc 23:04

a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)

\(\Leftrightarrow\begin{cases}x-\frac{1}{3}>0\\5x+2>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{3}< 0\\5x+2< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< -\frac{2}{5}\end{array}\right.\)

b) \(\left(5x+3\right)\left(3x-2\right)< 0\)

\(\Leftrightarrow\begin{cases}5x+3>0\\3x-2< 0\end{cases}\) hoặc \(\begin{cases}5x+3< 0\\3x-2>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-\frac{3}{5}\\x< \frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< -\frac{3}{5}\\x>\frac{2}{5}\end{cases}\) (loại)

\(\Leftrightarrow-\frac{3}{5}< x< \frac{2}{3}\)

 

Bình luận (0)

Các câu hỏi tương tự
BQ
Xem chi tiết
KW
Xem chi tiết
NC
Xem chi tiết
YT
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
KL
Xem chi tiết
DN
Xem chi tiết
NB
Xem chi tiết