\(\frac{x+15}{2000}+\frac{x+16}{1999}=\frac{x+17}{1998}+\frac{x+18}{1997}\)
\(\Leftrightarrow\frac{x+15}{2000}+1+\frac{x+16}{1999}+1=\frac{x+17}{1998}+1+\frac{x+18}{1997}+1\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}=\frac{x+2015}{1998}+\frac{x+2015}{1997}\)
\(\Leftrightarrow\frac{x+2015}{2000}+\frac{x+2015}{1999}-\frac{x+2015}{1998}-\frac{x+2015}{1997}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\right)=0\)
Có: \(\frac{1}{2000}+\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\ne0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)