\(x+1=\left(x+1\right)^{^2}\)
\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(=\left(x+1\right)x=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
Ta có :
\(x+1=\left(x+1\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+1=0\\x+1=1\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=0-1=-1\\x=1-1=0\end{array}\right.\)
Vậy \(x\in\left\{-1;0\right\}\)
\(x+1=\left(x+1\right)^2\) (x\(\ge\)-1)
<=>\(x+1-\left(x+1\right)^2=0\)
<=>\(\left(x+1\right).\left(-x\right)=0\)
<=>x=-1 hoặc x=0(nhận cả 2)
Vậy S={-1;0}