\(\left|x+1\right|+\left|x+2\right|+...+\left|x+2005\right|=2006x\)
Xét: \(\left|x+1\right|\ge0\)
\(\left|x+2\right|\ge0\)
... \(\left|x+2005\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+...+\left|x+2005\right|\)
= (x +1) +(x+2) +...+ (x+2005)
= x+1 +x+2+...+ x+2005
= (x+ x+ x+...+x)+ (1+2+...+2005)
= 2005x+ 2011015= 2006x
=> x= 2011015
Vậy x= 2011015